Uncertainty Principles for Abelian Groups

Liming Ge (jointly with Jingsong Wu, Wenming Wu & Wei Yuan)

Chinese Academy of Sciences

June 18, 2013 (ECNU, Shanghai, China)

Heisenberg uncertainty principle

Heisenberg's canonical commutation relation:

$$[P,Q]=PQ-QP=i\hbar$$

A mathematical representation: [D, M] = DM - MD = iIwhere $D = i\frac{d}{dx}$ and $M = M_x$. $D = i\mathcal{F}^*M\mathcal{F}$.

$$||f||^2 = \langle f, f \rangle = |\langle [D - d, M - c]f, f \rangle|$$

= $|\langle (M - c)f, (D - d)^*f \rangle - \langle (D - d)f, (M - c)^*f \rangle|$
 $\leq 2||(D - d)f|| \cdot ||(M - c)f||.$

Heisenberg uncertainty principle in term of Fourier analysis:

If

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} |\hat{f}(\xi)|^2 d\xi = 1,$$

then we must have

$$\int_{\mathbb{R}}|xf(x)|^2dx+\int_{\mathbb{R}}|\xi\widehat{f}(\xi)|^2d\xi\geqslant\frac{1}{(4\pi)^2}.$$

Hardy uncertainty principle:

If
$$|f(x)| \leqslant C_1 e^{-\pi a x^2}$$
 and $|\widehat{f}(\xi)| \leqslant C_2 e^{-\pi \xi^2/a}$, then $f = C e^{-\pi a x^2}$.

This implies immediately that f and \widehat{f} cannot be both compactly supported.

Questions:

1. What could be the relation between the support of f and that of \hat{f} ? E.g. If f has a compact support, can the support of \hat{f} lie in $[0,\infty)$?

(It is known that f and \hat{f} can be supported in $[0, \infty)$.)

2. What if \mathbb{R} is replaced by another abelian group G?

We shall study Question 2 for finite abelian groups and the group of integers.

G: a finite abelian group

 $f: G \to \mathbb{C}$, a complex valued function

$$supp(f) := \{x \in G : x \in G, f(x) \neq 0\}$$

 \widehat{f} : the Fourier transform of f

Theorem 1 (An uncertainty principle)

(for a nonzero function f):

1).
$$|supp(f)| \cdot |supp(\widehat{f})| \geqslant |G|$$
.

For a cyclic group of prime order *p* (T. Tao, 2005):

2).
$$|supp(f)| + |supp(\widehat{f})| \geqslant p + 1$$
.

Uncertainty principle in term of spatial properties:

Suppose $X \subset G$ and $S \subset \widehat{G}$. Define

$$P_X = \{f : supp(f) \subset X\}; \quad Q_S = \{f : supp(\widehat{f}) \subset S\}.$$

Let f be a nonzero function on G, X = supp(f) and $S = supp(\widehat{f})$. Then $f \in P_X \cap Q_S$.

Tao's result can be restated as follows:

For $G = \mathbb{Z}_p$ and any X, S given as above, if $P_X \cap Q_S \neq 0$, then $|X| + |S| \geq p + 1$.

We shall see $\dim(P_X \cap Q_S) = 1$ when |X| + |S| = p + 1.

Notation:

G: a finite additive abelian group, then G is self-dual.

 $l^2(G)$: the Hilbert space of all complex-valued functions on G.

Inner product: $\langle f, g \rangle := \frac{1}{|G|} \sum_{x \in G} f(x) \overline{g(x)}$.

Let f_x be the characteristic function on $\{x\}$. Then $\{f_x : x \in G\}$ is an orthogonal basis for $I^2(G)$.

Let $e: G \times G \to \mathbb{T}$ be any non-degenerate bi-character of G.

Let e_x denote the function $e(x, \cdot)$.

Then $\{e_x\}_{x\in G}$ is an orthonormal basis of $I^2(G)$.

If f is a complex function on G, the Fourier transform \hat{f} of f is

$$\widehat{f} := \frac{1}{|G|} \sum_{x \in G} f(x) \overline{e_x}.$$

More notation:

Let $X, S \subset G(=\widehat{G})$. Denote also by P_X the orthogonal projection from $l^2(G)$ onto the subspace $l^2(X)$ and Q_S the projection from $l^2(G)$ onto the subspace $span\{e_X : X \in S\}$.

Then the uncertainty principle on G given by Theorem 1, part 1) can be reformulated by:

$$|supp(f)||supp(\widehat{f})|\geqslant |G|(f\neq 0)$$
 is equivalent to
$$|X|\cdot |S|<|G|\Rightarrow P_X\wedge Q_S=0.$$

The proof follows from a straight forward computation: for any $f \in I^2(G)$, if $f(x) = \sum_{y \in S} \lambda_y e_y(x)$, then

$$\widehat{f}(\xi) = \frac{1}{|G|} \sum_{y \in S} \lambda_y e_y(\xi) = \frac{1}{|G|} \lambda_{\xi}.$$

In fact,

$$\widehat{f}(\xi) = \frac{1}{|G|} \sum_{x \in G} f(x) \overline{e(x, \xi)}$$

$$= \frac{1}{|G|} \sum_{x \in G} (\sum_{y \in S} \lambda_y e(y, x)) \overline{e(x, \xi)}$$

$$= \frac{1}{|G|} \sum_{y \in S} \lambda_y (\sum_{x \in G} e(y, x) \overline{e(x, \xi)}) = \frac{1}{|G|} \lambda_{\xi}.$$

Thus $f \in (P_X \land Q_S)(I^2(G))) \Rightarrow supp(f) \subset X$, $supp(\widehat{f}) \subset S$. \Box

Theorem 2: Let $G = \mathbb{Z}_p$ with p prime. Then the FAQ

1) **Chebotarev's theorem**(Resetnyak, Dieudonne, T.Tao, etc): Let $\{x_1, \dots, x_n\}$, $\{y_1, \dots, y_n\} \subset \mathbb{Z}_p$, $(n \leq p)$. Then

$$det(e^{\frac{2\pi i x_j y_k}{p}})_{1 \leqslant j,k \leqslant n} \neq 0.$$

- 2) (Tao's uncertainty principle) $|supp(f)| + |supp(\widehat{f})| \geqslant p + 1(f \neq 0)$.
- 3) If $|X| + |S| \leq p$, then $P_X \wedge Q_S = 0$.

Proof. 1) \Rightarrow 2) Theorem 1.1. in [9, T.Tao].

- 2) \Rightarrow 3) If there is a nonzero function $f \in P_X \land Q_S$, then $supp(f) \subset X$ and $supp(\widehat{f}) \subset S$. Thus $|X| + |S| \ge |supp(f)| + |supp(\widehat{f})| \ge p + 1$.
- 3) \Rightarrow 2) If $|supp(f)| + |supp(\hat{f})| \leq p$, then let X = supp(f) and $S = supp(\hat{f})$. We get a contradiction.
- 3) \Rightarrow 1) If there is $\{x_1, \cdots, x_n\}$, $\{y_1, \cdots, y_n\} \subset \mathbb{Z}/p\mathbb{Z}(n \leqslant p)$ such that

$$det(e^{\frac{2\pi i x_j y_k}{p}})_{1 \leqslant j,k \leqslant n} = 0.$$

Then vectors $\{e_{x_1}, \cdots, e_{x_n}, f_y : y \in \{x_1, \cdots, x_n\}^c\}$ is linearly dependent. Thus there is a non-zero vector $(\lambda_0, \cdots, \lambda_{p-1})$ such that

$$\sum_{i=1}^n \lambda_{x_i} e_{x_i} + \sum_{y \in \{x_1, \dots, x_n\}^c} \lambda_y f_y = 0.$$

Let
$$X = \{x_1, \dots, x_n\}^c$$
, $S = \{x_1, \dots, x_n\}$ and $f(x) = \lambda_x, x \in G$. Then $|X| + |S| = p$ but $f \in P_X \land Q_S$. \square

Proposition 1.

Let $w = e^{\frac{2\pi i}{n}}$ and G be a cyclic group of order n and |X| + |S| = n. Then

$$det(w^{jk})_{j\in X,k\in S^c}=0\Leftrightarrow det(w^{jk})_{j\in X^c,k\in S}=0.$$

In particular $P_X \wedge Q_S = 0 \Leftrightarrow det(w^{jk})_{j \in X, k \in S^c} \neq 0$.

Proof. Suppose |X| = I, $X^c = \{j'_1, \dots, j'_{n-l}\}$, $S = \{k_1, \dots, k_{n-l}\}$. Define $Tf_x = f_x$, $x \in X$ and $Tf_{j_t} = e_{k_t}$, $t = 1, \dots, n-l$. Then $P_X \vee Q_S = I \Leftrightarrow T$ is invertible $\Leftrightarrow T|_{I^2(X^c)}$ is invertible. The matrix of $T|_{I^2(X^c)} = (w^{jk})_{\{j \in X^c, k \in S\}}$.

Proposition 2

Let *G* be a finite abelian group and *X*, $S \subset G$. Then we have the following:

- 1) If |X| + |S| > |G|, then $P_X \wedge Q_S \neq 0$.
- 2) If |X| + |S| = |G|, then $P_X \wedge Q_S = 0$ if and only if $P_{X^c} \wedge Q_{S^c} = 0$.
- 3) If $|X| \cdot |S| < 2\sqrt{|G|}$, then $P_X \wedge Q_S = 0$.

Proof:
$$\tau(T) = \frac{1}{|G|} \sum_{x \in G} \langle Te_x, e_x \rangle$$
 (the trace on $\mathfrak{B}(I^2(G))$).

By Kaplansky-formula,
$$\tau(P_X \vee Q_S - P_X) = \tau(Q_S - P_X \wedge Q_S)$$

$$\tau(P_X \wedge Q_S) = \tau(P_X) + \tau(Q_S) - \tau(P_X \vee Q_S) > 0.\square$$

Proposition 3

Suppose G is a finite abelian group. Assume that there are $\alpha, \beta, \gamma \in \mathbb{N}$ such that, for any function $f \neq 0$ on G, we have $\alpha|supp(f)| + \beta|supp(\widehat{f})| \geqslant \gamma$. Then for any nonzero function g on $G \times \mathbb{Z}_p$ with p prime, we have

$$p\alpha|supp(g)| + \beta|supp(\widehat{g})| \geqslant p\gamma$$
, $\alpha|supp(g)| + p\beta|supp(\widehat{g})| \geqslant p\gamma$.

Corollary 1

Let $G = \mathbb{Z}_p \times \mathbb{Z}_q$ and f be a non zero function on G, where p and q are prime numbers. Then we have

$$|q|supp(f)| + |supp(\widehat{f})| \geqslant q(p+1), |supp(f)| + |q|supp(\widehat{f})| \geqslant q(p+1),$$

 $|p|supp(f)| + |supp(\widehat{f})| \geqslant p(q+1), |supp(f)| + |p|supp(\widehat{f})| \geqslant p(q+1).$

Corollary 2

Let $G = (\mathbb{Z}_p)^n$ for a prime number p and a natural number n, and f be a non zero function on G. Then we have

$$p^{j}|supp(f)| + p^{n-j-1}|supp(\widehat{f})| \geqslant p^{n} + p^{n-1}(j = 0, \dots, n-1).$$

Corollary 3

Let $G = (\mathbb{Z}_p)^n$ for a prime number p and a natural number n. For any subsets $X, S \subset G$, if there exist $0 \ge j \ge n-1$ such that $p^j |X| + p^{n-j-1} |S| < p^n + p^{n-1}$ holds, then $P_X \wedge Q_S = 0$.

Uncertainty Principles for $\mathbb Z$

Recall that an uncertainty principle for \mathbb{R} states that, when $X \subset \mathbb{R}$ and $S \subset \widehat{\mathbb{R}}$ are both compact, then $P_X \cap Q_S = 0$. We hope to describe the largest possible such pairs (X, S). Or symmetrically the smallest pairs (X, S) so that $P_X \vee Q_S = I$.

Since \mathbb{Z} has no invariant finite measure, we may consider its dual group $G = \mathbb{T}$, the unit circle on the complex plane.

Now $G = \widehat{\mathbb{Z}} = \mathbb{T}$, $\widehat{G} = \widehat{\mathbb{T}} = \mathbb{Z}$. G is not self-dual.

Goal: To investigate the respective subsets X of \mathbb{T} and S of \mathbb{Z} such that $P_X \wedge Q_S = 0$ and $P_X \vee Q_S = I$.

Notation:

 $dm(z) = \frac{1}{2\pi i} \frac{dz}{z} = \frac{1}{2\pi} d\theta$: the normalized Lebesgue measure on \mathbb{T} , where $z = e^{i\theta}$, $\theta \in [0, 2\pi)$. Also denote $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, or simply $[0, 2\pi]$. $\{e^{im\theta}: \theta \in [0, 2\pi), m \in \mathbb{Z}\}$: an orthonormal basis of $L^2(\mathbb{T})$. $\{e_n: n \in \mathbb{Z}\}$: the standard orthonormal basis in $I^2(\mathbb{Z})$, where $e_n(m) = \delta_{n,m}$.

The Fourier transformation: $e^{im\theta} \mapsto e_m$ is a unitary operator from $L^2(\mathbb{T})$ to $I^2(\mathbb{Z})$.

Recall:

 $X \subset [0, 2\pi]$: a measurable subset, m(X): the measure of $X \in P_X$: the orthogonal projection from $L^2(\mathbb{T})$ onto $L^2(X)$

 $S \subset \mathbb{Z}$

 Q_S : the projection from $L^2(\mathbb{T})$ onto $\overline{span}\{e^{im\theta}: m \in S\}$

 P_t : the projection from $L^2(\mathbb{T})$ onto $L^2([2(1-t)\pi,2\pi])$ for any 0 < t < 1 $Q_{\geqslant j}$: the projection from $L^2(\mathbb{T})$ onto $\overline{span}\{e^{im\theta}:m\geqslant j,m\in\mathbb{Z}\}$

When j = 0, the range of projection $Q_{\geqslant 0}$ is the Hardy space $H^2(\mathbb{T})$

For a mean μ_{ω} on \mathbb{Z} given by a free ultrafilter ω , we define $\mu_{\omega}(S) = \mu_{\omega}(\chi_S)$

If the above is independent of ω , then we denote it by $\mu_{\infty}(S)$ and it is given by

$$\mu_{\infty}(S) = \lim_{n \to \infty} \frac{\left| S \cap \{-n, -(n-1), \cdots, n-1, n\} \right|}{2n+1}.$$

Definition

A pair (X, S) is called balanced if $P_X \wedge Q_S = 0$ and $P_X \vee Q_S = I$.

When G is a finite abelian group, if (X, S) is balance, then $\tau(P_X) + \tau(Q_S) = 1$.

Examples and Questions:

Examples $X = [0, \pi]$, $S_0 = 2\mathbb{Z}$, all even integers, $S_1 \subset \mathbb{Z}$ all odd integers. (X, S_0) and (X, S_1) are balanced pairs.

$$m(X) + \mu_{\infty}(S_0) = m(X) + \mu_{\infty}(S_1) = 1.$$

Questions Is $m(X) + \mu_{\infty}(S) = 1$ a necessary condition for balanced pairs? If "no", for any $\epsilon > 0$, can one find a balanced pair (X, S) so that $m(X) + \mu_{\infty}(S) < \epsilon$ or $m(X) + \mu_{\omega}(S) < \epsilon$?

Some basic facts:

1)
$$P_X \vee Q_S = I \Leftrightarrow P_X \vee Q_{-S} = I$$
, where $-S = \{-s : s \in S\}$;

2)
$$P_X \wedge Q_S = 0 \Leftrightarrow P_X \wedge Q_{-S} = 0$$
;

3)
$$P_X \vee Q_S = I \Leftrightarrow P_X \vee Q_{S+j} = I$$
, where $S + j = \{s + j : s \in S\}$;

4)
$$P_X \wedge Q_S = 0 \Leftrightarrow P_X \wedge Q_{S+j} = 0$$
;

5) If
$$X \subset \mathbb{T}$$
 with $0 < m(X) < 1$, then $P_X \wedge Q_{\geq j} = 0$ and $P_X \vee Q_{\geq j} = I(\forall j \in \mathbb{Z})$.

From 5), we see that $\frac{1}{2} < m(X) + \mu_{\infty}(Q_{\geq 0}) < \frac{3}{2}$.

Proof. Let $(Uf)(z) = \overline{f(z)}$. Then U is a conjugate linear operator such that $U^2 = I$ and $UP_XU = P_X$, $UQ_SU = Q_{-S}$. Thus 1) and 2) are true.

Let $(U_j f)(z) = z^j f(z)$. Then U_j is a unitary operator such that $UP_X U^* = P_X$, $UQ_S U^* = Q_{S+j}$. Hence 3) and 4) are true.

For 5), let (Vf)(z)=zf(z). Then V is a unitary operator such that $(I-P_X\wedge Q_{\geqslant 0})VP_X\wedge Q_{\geqslant 0}=0$. As $P_X\wedge Q_{\geqslant 0}\leqslant Q_{\geqslant 0}$ and by Beurling theorem, there exists an inner function φ such that $P_X\wedge Q_{\geqslant 0}(H^2(\mathbb{T}))=\varphi H^2(\mathbb{T})$. Thus $\varphi=0$ and $P_X\wedge Q_{\geqslant 0}=0$.

From 2), $P_{X^c} \wedge Q_{\leq 0} = 0$. This implies that $P_X \vee Q_{\geq 0} = I$.

Theorem 3

For any $\varepsilon > 0$, there exists a measurable subset X of $[0,2\pi]$ with $0 < m(X) < \varepsilon$ and a subset S of $\mathbb Z$ with $\mu_{\omega}(S) = 0$ for some free ultrafilter ω such that $P_X \wedge Q_S = 0$ and $P_X \vee Q_S = I$.

Proof. For any $\epsilon > 0$, there exist n in \mathbb{N} such that $\frac{1}{n} < \epsilon$. Let $X = [2(1-\frac{1}{n})\pi, 2\pi]$. Then $m(X) = \frac{1}{n} < \epsilon$. From Basic Fact 5), we have $P_X \wedge Q_{\geq 0} = 0$ and $P_X \vee Q_{\geq 0} = P_X \vee Q_{\geq j} = I$ for any $j \in \mathbb{Z}$. Then $\overline{span}\{e^{i\frac{n-1}{n}m\theta}, m \geq j\} = L^2[0, 2\pi]$ for j in \mathbb{Z} . In fact if there is a non zero vector f in $L^2[0, 2\pi]$ orthogonal to $\overline{span}\{e^{i\frac{n-1}{n}m\theta}, m \geq j\}$, we define a function $g(\theta) = f(\frac{n}{n-1}\theta)$ when $0 \leq \theta \leq 2\pi\frac{n-1}{n}$, 0 elsewhere, then we have

$$\int_0^{2\pi} f(\theta) e^{-i\frac{n-1}{n}m\theta} d\theta = \int_0^{2\pi} g(\frac{n-1}{n}\theta) e^{-i\frac{n-1}{n}m\theta} d\theta = \int_0^{2\frac{n-1}{n}\pi} g(\theta) e^{-im\theta} = 0,$$

and hence g is a non zero vector in the range of $I - (P_{1/n} \vee Q_{\geq j})$ which leads a contradiction.

For any n in \mathbb{N} , since $\overline{span}\{e^{j\frac{n-1}{n}m\theta}, m \geq j\} = L^2[0, 2\pi]$ for j in \mathbb{Z} , there exists m(n, j) in \mathbb{N} such that the distance between $e^{ik\theta}$ and

$$\overline{span}\left\{e^{i\frac{n-1}{n}j\theta},\ldots,e^{i\frac{n-1}{n}m(n,j)\theta}\right\} (=\mathfrak{R}_{n,j})$$

is less than $\frac{1}{n}$ for any $-n \leq k \leq n$. Obviously, m(n,j) > j for any j in \mathbb{Z} . Let $S_{n,j}$ be the set $\{j,\ldots,m(n,j)\}$. We define m_k in \mathbb{N} by induction. Let $m_1 = m(1,0)$. Suppose that m_k is defined. Then $m_{k+1} = m(k+1,m_k^2)$ for $k \geq 1$ and $m_{k+1} > m_k^2$. It is clear that the closure of the union of \mathfrak{R}_{k,m_k} , $k \geq 1$ is $L^2[0,2\pi]$ and its corresponding set S is $\bigcup_{k\geq 1} S_{k,m_k}$. For the sequence $\frac{\#S\cap\{-n,\ldots,0,\ldots,n\}}{2n+1}$, there is a subsequence $\{\frac{\sum_{j=1}^k (m_j-m_{j-1}^2)}{2m_k^2+1}\}_{k\geq 1}$ with limit zero, since $\sum_{j=1}^k (m_j-m_{j-1}^2) < m_k$. Hence there is a free ultrafilter ω such that $\lim_{n\to\omega} \frac{\#S\cap\{-n,\ldots,0,\ldots,n\}}{2n+1} = 0$. \square

Corollary

Let $X_n = [0, \frac{1}{n}] \subset \mathbb{T}$. For any free ultrafilter ω , there is a subset S of \mathbb{Z} with $\mu_{\omega}(S) = 0$ such that $P_{X_n} \wedge Q_S = 0$ and $P_{X_n} \vee Q_S = I$, for any $n \geq 1$. Thus, for any $f, g \in L^2(\mathbb{T})$, if there is an n such that $f|_{X_n} = g|_{X_n}$ and $\widehat{f}|_S = \widehat{g}|_S$, then f = g.

Conjecture: $S = \{0, \pm 1, \pm p, \pm 2p : p \text{ a prime number}\}$ is such a set satisfies our Theorem 4, i.e., $([0, \epsilon], S)$ is balanced for any $\epsilon > 0$.

In other words, two functions on \mathbb{T} agree on $[0,\epsilon]$ and their Fourier expansions agree on S. Then they must be the same function.

One possible application:

If (X, S) is a balanced pair for \mathbb{T} and $f \in L^2(\mathbb{T})$, then how can we recover f from $f|_X$ and $\widehat{f}|_S$?

It is not an easy question. In the following we shall workout a concrete example.

Theorem 4

Let $\{a_n\}_{n=1}^{\infty}$ be an increasing sequence of odd natural numbers such that

$$\sum_{n=1}^{\infty} \frac{1}{a_n} = +\infty.$$

Suppose $S = \{2k : k \in \mathbb{N}\} \cup \{a_n\}$. Then $P_{1/2} \vee Q_S = I$ and $P_{1/2} \wedge Q_S = 0$. In this case, $X = [\pi, 2\pi]$. We may choose $\{a_n\}$ so that $m(X) + \mu_{\infty}(S) = \frac{3}{4}$.

Lemma Suppose p is a prime number and $I_j = \{w^j e^{i\theta} \in \mathbb{T} : \theta \in [0, \frac{2\pi}{p})\}$ for $j = 0, 1, \dots, p-1$. Let $X(i_1, \dots, i_m) = I_{i_1} \cup \dots \cup I_{i_m}$ where $0 \le i_1 < \dots < i_m \le p-1$. Let $S_0 \subset \{0, 1, \dots, p-1\}$ and $\emptyset \ne S_1 \subset S_0^c$. Let $S = \{kp + s_0 : k \in \mathbb{Z}, s_0 \in S_0\} \cup \{kp + s_1 : k \ge 0, s_1 \in S_1\}$. Then we have

$$P_{X(i_1,\cdots,i_m)} \wedge Q_S = 0 \Leftrightarrow |S_0^c| \geqslant m+1.$$

Proof of Theorem 4. $Q_S < Q_{\geqslant 0}$, $P_{1/2} \wedge Q_{\geqslant 0} = 0 \Rightarrow P_{1/2} \wedge Q_S = 0$. Assume that $P_{1/2} \vee Q_S \neq I$. Then there exists a non-zero function f in $L^2([0,2\pi])$ such that f is orthogonal to the ranges of $P_{1/2}$ and Q_S . Thus $supp(f) \subset [0,\pi]$ and for any $s \in S$, we have

$$\frac{1}{2\pi} \int_0^{\pi} f(\theta) e^{-is\theta} d\theta = \frac{1}{4\pi} \int_0^{2\pi} f(\frac{\theta}{2}) e^{-is\theta/2} d\theta = 0.$$

Claim. $\mathfrak{R}_S := \overline{span}\{e^{is\theta/2} : s \in S\} = L^2([0, 2\pi]).$

Firstly when $s = 2k(k \in \mathbb{N})$, we have $e^{ik\theta} \in \mathcal{H}_S$. When $s = a_n$ for $n \ge 1$, for any $m \in \mathbb{Z}$, we have

$$\langle e^{ia_n\theta/2}, e^{im\theta} \rangle = \frac{2i}{\pi(a_n - 2m)}.$$

Then $e^{ia_n\theta/2} = \sum_{m \in \mathbb{Z}} \frac{2i}{\pi} \frac{e^{im\theta}}{a_n - 2m}$. Let $\xi_n = \sum_{m = -\infty}^{-1} \frac{e^{im\theta}}{a_n - 2m} = \sum_{m = 1}^{\infty} \frac{e^{-im\theta}}{a_n + 2m}$. To show that the claim holds, we just need to show that $\overline{span}\{\xi_n : n \geqslant 1\} = \overline{span}\{e^{-im\theta} : m \geqslant 1\}$ which is equivalent to $\{\xi_n : n \geqslant 1\}^{\perp} \cap \overline{span}\{e^{-im\theta} : m \geqslant 1\} = 0$. Suppose that $\alpha^{(0)} = \sum_{m \geqslant 1} \alpha_m^{(0)} e^{-im\theta}$ such that $\alpha^{(0)} \perp \{\xi_n : n \geqslant 1\}$ and $\sum_{m \geqslant 1} |\alpha_m^{(0)}|^2 < \infty$. Thus for any $n \geqslant 1$, we have

$$\sum_{m\geqslant 1}\frac{\alpha_m^{(0)}}{a_n+2m}=0.$$

This implies that for any $n \ge 2$, we have

$$0 = \frac{1}{a_n - a_1} \sum_{m=1}^{\infty} \left(\frac{\alpha_m^{(0)}}{a_1 + 2m} - \frac{\alpha^{(0)}}{a_n + 2m} \right) = \sum_{m=1}^{\infty} \frac{\alpha_m^{(0)}}{a_1 + 2m} \frac{1}{a_n + 2m}.$$

Let $\alpha_m^{(1)} := \frac{\alpha_m^{(0)}}{a_1 + 2m}$ and $\alpha^{(1)} := \sum_{m \geqslant 1} \alpha_m^{(1)} e^{-im\theta}$. Then $\alpha^{(1)} \perp \{\xi_n : n \geqslant 2\}$ and

$$\sum_{m=1}^{\infty} |\alpha_m^{(1)}| \leqslant \|\alpha^{(0)}\| \cdot (\sum_{m=1}^{\infty} \frac{1}{(a_n + 2m)^2})^{1/2} < \infty.$$

Iterating the process, for any N > 0, we can define $\alpha_m^{(N)} = \frac{\alpha_m^{(N-1)}}{a_N + 2m}$ and $\alpha^{(N)} = \sum_{m \geqslant 1} \alpha_m^{(N)} e^{-im\theta}$ with $\alpha^{(N)} \perp \{\xi_n : n \geqslant N+1\}$. Without loss of generality, we can assume that $\alpha_1^{(0)} = 1$. Then $\alpha_1^{(N)} = \prod_{n=1}^N \frac{1}{a_n + 2}$. We define

$$\beta_m^{(N)} = \frac{\alpha_m^{(N)}}{\alpha_1^{(N)}} = (a_1 + 2) \prod_{n=2}^N \frac{a_n + 2}{a_n + 2m} \alpha_m^{(1)}, m \geqslant 1.$$

Then we have $\beta^{(N)} = \frac{\alpha^{(N)}}{\alpha_1^{(N)}}$ and $\beta^{(N)} \perp \{\xi_n : n \geqslant N+1\}$ and

$$\sum_{m\geqslant 2} |\beta_m^{(N)}| = \sum_{m\geqslant 2} (a_1 + 2) \left(\prod_{n=2}^N \frac{a_n + 2}{a_n + 2m} \right) |\alpha_m^{(1)}|$$

$$\leqslant (a_1 + 2) \left(\prod_{n=2}^N \frac{a_n + 2}{a_n + 4} \right) \sum_{m\geqslant 2} |\alpha_m^{(1)}|.$$

Then as $\sum \frac{1}{a_n} = +\infty$, thus $\prod_{n=2}^{N} \frac{a_n+2}{a_n+4} = \prod (1-\frac{2}{a_n+4}) \to 0$ as $N \to \infty$. Then \exists sufficient large N_0 such that for any $N \geqslant N_0$ we have

$$(a_1+2)(\prod_{n=2}^{N}\frac{a_n+2}{a_n+4})\sum_{m\geqslant 2}|\alpha_m^{(1)}|<1.$$
 (1)

Thus $\sum_{m\geq 2} |\beta_m^{(N)}| < 1$ for any $N \geqslant N_0$.

On the other hand for any vector $\beta = e^{-i\theta} + \sum_{m \ge 2} \beta_m e^{-im\theta}$ which is orthogonal some ξ_k , $k \ge 1$, then we have

$$1 = -\sum_{m \geqslant 2} \beta_m \frac{a_k + 2}{a_k + 2m} \leqslant \sum_{m \geqslant 2} |\beta_m|.$$

Thus by (1) and (2), we get a contradiction. Thus $\alpha^{(0)} = 0$. \square

Corollary Let $S = \{nk : k \ge 0\} \cup \{a_m\}$ where $\{a_m\}$ is an increasing sequence of positive integers in $(n\mathbb{Z})^c$ and $\sum_m \frac{1}{a_m} = \infty$, then $P_{(n-1)/n} \vee Q_S = I$ and $P_{(n-1)/n} \wedge Q_S = 0$.

Finding f from the restrictions to (X, S) is related to finding the inverse of certain Hankel operators. A special one is the following:

Let H(s)(0 < s < 1) be the Hankel operator with the following matrix form

$$\begin{pmatrix} \frac{1}{1+s} & \frac{1}{2+s} & \frac{1}{3+s} & \cdots \\ \frac{1}{2+s} & \frac{1}{3+s} & \frac{1}{4+s} & \frac{1}{5+s} & \cdots \\ \vdots & \vdots & \ddots & \vdots & \ddots \end{pmatrix}.$$

Some References

- [1] Man-Duen Choi, *Tricks or Treats with the Hilbert Matrix*, The Amer. Math. Monthly. Vol.90, No.5, 301-312, 1983.
- [2] J. Dieudonné, *Une propritété des racines de l'unité*, Collection of articles dedicated to Alberto González Dominguez on his sixty-fifth birthday, Rev. Un. Mat. Argentina Vol.25, 1-3, 1970/71.
- [3] R.J. Evan and I.M. Stark, Generalized Vandermonde determinants and roots of unity of prime order, Proc. Amer. Math. Soc. Vol. 58,51-54, 1977.
- [4] P. Frenkel, Simple proof of Chebotarev's theorem on roots of unity preprint, math. AC/0312398.
- [5] D. Goldstein, R. Guralnick, and I. Issaacs, *Inequalities for finite group per-mutation modules preprint*, math. CO/0312407.

- [6] M. Newman, On a theorem of Cebotarev Linear and Multilinear Algebra, Vol.3 (no. 4), 259-262, 1975/76.
- [7] Yu. G. Rešetnyak, New Proof of a theorem of N.G. Cebotarev, (Russian) Uspehi Mat. Nauk (N.S.), Vol.10, 155-157, 1955.
- [8] P. Stevenhagen and H.W. Lenstra Jr., Chebotarëv and his density theorem, Math Intelligencer, Vol.18, 26-37, 1996.
- [9] Terence Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett., Vol.12, 121-127, 2005.

Thanks