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Uncertainty Principles on R and Finite Abelian Groups
Heisenberg uncertainty principle

Heisenberg’s canonical commutation relation:
[P,Q ] = PQ − QP = i~A mathematical representation: [D,M ] = DM −MD = iIwhere D = i d

dx and M = Mx . D = iF∗MF.
||f ||2 = 〈f , f 〉 = |〈[D − d ,M − c ]f , f 〉|= |〈(M − c)f , (D − d )∗f 〉 − 〈(D − d )f , (M − c)∗f 〉|
6 2‖(D − d )f ‖ · ‖(M − c)f ‖.
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Uncertainty Principles on R and Finite Abelian Groups

Heisenberg uncertainty principle in term of Fourier analysis:If ∫
R
|f (x )|2dx = ∫

R
|f̂ (ξ)|2dξ = 1,

then we must have∫
R
|xf (x )|2dx + ∫

R
|ξ f̂ (ξ)|2dξ >

1(4π)2 .
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Uncertainty Principles on R and Finite Abelian Groups

Hardy uncertainty principle:If |f (x )| 6 C1e−πax2 and |f̂ (ξ)| 6 C2e−πξ
2/a, then f = Ce−πax2 .

This implies immediately that f and f̂ cannot be both compactlysupported.Questions:1. What could be the relation between the support of f and that of f̂ ?E.g. If f has a compact support, can the support of f̂ lie in [0,∞)?
(It is known that f and f̂ can be supported in [0,∞).)
2. What if R is replaced by another abelian group G ?
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Uncertainty Principles on R and Finite Abelian Groups

We shall study Question 2 for finite abelian groups and the group ofintegers.
G : a finite abelian group
f : G Ï C, a complex valued function
supp(f ) := {x ∈ G : x ∈ G , f (x ) 6= 0}
f̂ : the Fourier transform of fTheorem 1 (An uncertainty principle)(for a nonzero function f ):

1). |supp(f )| · |supp(f̂ )| > |G |.
For a cyclic group of prime order p (T. Tao, 2005):

2). |supp(f )|+ |supp(f̂ )| > p + 1.
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Uncertainty Principles on R and Finite Abelian Groups

Uncertainty principle in term of spatial properties:

Suppose X ⊂ G and S ⊂ Ĝ . Define
PX = {f : supp(f ) ⊂ X}; QS = {f : supp(f̂ ) ⊂ S}.

Let f be a nonzero function on G , X = supp(f ) and S = supp(f̂ ). Then
f ∈ PX ∩ QS .
Tao’s result can be restated as follows:For G = Zp and any X , S given as above, if PX ∩ QS 6= 0, then
|X |+ |S | ≥ p + 1.
We shall see dim(PX ∩ QS ) = 1 when |X |+ |S | = p + 1.
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Uncertainty Principles on R and Finite Abelian Groups
Notation:

G : a finite additive abelian group, then G is self-dual.
l2(G ): the Hilbert space of all complex-valued functions on G .Inner product: 〈f , g〉 := 1

|G |
∑

x∈G f (x )g (x ).
Let fx be the characteristic function on {x}. Then {fx : x ∈ G} is anorthogonal basis for l2(G ).Let e : G × G Ï T be any non-degenerate bi-character of G .Let ex denote the function e(x , ·).Then {ex}x∈G is an orthonormal basis of l2(G ).If f is a complex function on G , the Fourier transform f̂ of f is

f̂ := 1
|G |

∑
x∈G

f (x )ex .
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Uncertainty Principles on R and Finite Abelian Groups

More notation:

Let X , S ⊂ G (= Ĝ ). Denote also by PX the orthogonal projection from
l2(G ) onto the subspace l2(X ) and QS the projection from l2(G ) onto thesubspace span{ex : x ∈ S}.Then the uncertainty principle on G given by Theorem 1, part 1) can bereformulated by:
|supp(f )||supp(f̂ )| > |G |(f 6= 0) is equivalent to

|X | · |S | < |G | Ñ PX ∧ QS = 0.
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Uncertainty Principles on R and Finite Abelian Groups
The proof follows from a straight forward computation:for any f ∈ l2(G ), if f (x ) = ∑

y∈S λyey (x ), then
f̂ (ξ) = 1

|G |
∑
y∈S

λyey (ξ) = 1
|G |λξ .

In fact,
f̂ (ξ) = 1

|G |
∑
x∈G

f (x )e(x , ξ)
= 1
|G |

∑
x∈G

(∑
y∈S

λye(y , x ))e(x , ξ)
= 1
|G |

∑
y∈S

λy (∑
x∈G

e(y , x )e(x , ξ)) = 1
|G |λξ .

Thus f ∈ (PX ∧ QS )(l2(G )))Ñ supp(f ) ⊂ X , supp(f̂ ) ⊂ S . 2
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Uncertainty Principles on R and Finite Abelian Groups

Theorem 2: Let G = Zp with p prime. Then the FAQ
1) Chebotarev’s theorem(Resetnyak, Dieudonne, T.Tao, etc): Let
{x1, · · · , xn}, {y1, · · · , yn} ⊂ Zp, (n 6 p). Then

det(e 2πixj yk
p )16j ,k6n 6= 0.

2) (Tao’s uncertainty principle)|supp(f )|+ |supp(f̂ )| > p + 1(f 6= 0).
3) If |X |+ |S | 6 p, then PX ∧ QS = 0.
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Uncertainty Principles on R and Finite Abelian Groups
Proof. 1)Ñ 2) Theorem 1.1. in [9, T.Tao].
2)Ñ 3) If there is a nonzero function f ∈ PX ∧ QS , then supp(f ) ⊂ Xand supp(f̂ ) ⊂ S . Thus |X |+ |S | > |supp(f )|+ |supp(f̂ )| > p + 1.
3)Ñ 2) If |supp(f )|+ |supp(f̂ )| 6 p, then let X = supp(f ) and
S = supp(f̂ ). We get a contradiction.
3)Ñ 1) If there is {x1, · · · , xn}, {y1, · · · , yn} ⊂ Z/pZ(n 6 p) such that

det(e 2πixj yk
p )16j ,k6n = 0.

Then vectors {ex1 , · · · , exn , fy : y ∈ {x1, · · · , xn}c} is linearly dependent.Thus there is a non-zero vector (λ0, · · · , λp−1) such that
n∑

i=1

λxi exi + ∑
y∈{x1,··· ,xn}c

λy fy = 0.

Let X = {x1, · · · , xn}c , S = {x1, · · · , xn} and f (x ) = λx , x ∈ G . Then
|X |+ |S | = p but f ∈ PX ∧ QS . 2
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Uncertainty Principles on R and Finite Abelian Groups

Proposition 1.Let w = e
2πi
n and G be a cyclic group of order n and |X |+ |S | = n. Then

det(w jk )j∈X ,k∈Sc = 0⇔ det(w jk )j∈X c ,k∈S = 0.

In particular PX ∧ QS = 0⇔ det(w jk )j∈X ,k∈Sc 6= 0.
Proof. Suppose |X | = l ,X c = {j ′1, · · · , j ′n−l}, S = {k1, · · · , kn−l}. Define
Tfx = fx , x ∈ X and Tfjt = ekt , t = 1, · · · , n − l .Then PX ∨ QS = I ⇔ T is invertible ⇔ T |l2(X c ) is invertible.The matrix of T |l2(X c ) = (w jk ){j∈X c ,k∈S}.
2
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Uncertainty Principles on R and Finite Abelian Groups

Proposition 2Let G be a finite abelian group and X , S ⊂ G . Then we have the following:
1) If |X |+ |S | > |G |, then PX ∧ QS 6= 0.
2) If |X |+ |S | = |G |, then PX ∧ QS = 0 if and only if PX c ∧ QSc = 0.
3) If |X | · |S | < 2

√
|G |, then PX ∧ QS = 0.

Proof: τ(T ) = 1
|G |

∑
x∈G 〈Tex , ex〉 (the trace on B(l2(G ))).By Kaplansky-formula, τ(PX ∨ QS − PX ) = τ(QS − PX ∧ QS )

τ(PX ∧ QS ) = τ(PX ) + τ(QS )− τ(PX ∨ QS ) > 0.2
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Uncertainty Principles on R and Finite Abelian Groups

Proposition 3Suppose G is a finite abelian group. Assume that there are α, β, γ ∈ N suchthat, for any function f ( 6= 0) on G , we have α|supp(f )| + β|supp(f̂ )| > γ.Then for any nonzero function g on G × Zp with p prime, we have
pα|supp(g )|+ β|supp(ĝ )| > pγ, α|supp(g )|+ pβ|supp(ĝ )| > pγ.

Corollary 1Let G = Zp × Zq and f be a non zero function on G , where p and q areprime numbers. Then we have
q|supp(f )|+ |supp(f̂ )| > q(p + 1), |supp(f )|+ q|supp(f̂ )| > q(p + 1),
p|supp(f )|+ |supp(f̂ )| > p(q + 1), |supp(f )|+ p|supp(f̂ )| > p(q + 1).
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Uncertainty Principles on R and Finite Abelian Groups

Corollary 2Let G = (Zp)n for a prime number p and a natural number n, and f be anon zero function on G . Then we have
pj |supp(f )|+ pn−j−1|supp(f̂ )| > pn + pn−1(j = 0, · · · , n − 1).

Corollary 3Let G = (Zp)n for a prime number p and a natural number n. For anysubsets X , S ⊂ G , if there exist 0 > j > n−1 such that pj |X |+pn−j−1|S | <
pn + pn−1 holds, then PX ∧ QS = 0.
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Uncertainty Principles on ZUncertainty Principles for Z

Recall that an uncertainty principle for R states that, when X ⊂ R and
S ⊂ R̂ are both compact, then PX ∩ QS = 0. We hope to describe thelargest possible such pairs (X , S ). Or symmetrically the smallest pairs(X , S ) so that PX ∨ QS = I .
Since Z has no invariant finite measure, we may consider its dual group
G = T, the unit circle on the complex plane.
Now G = Ẑ = T, Ĝ = T̂ = Z. G is not self-dual.
Goal: To investigate the respective subsets X of T and S of Z such that
PX ∧ QS = 0 and PX ∨ QS = I .

16 / 38



Uncertainty Principles on Z

Notation:

dm(z) = 1
2πi

dz
z = 1

2π dθ: the normalized Lebesgue measure on T, where
z = e iθ , θ ∈ [0, 2π). Also denote T = R/2πZ, or simply [0, 2π].
{e imθ : θ ∈ [0, 2π),m ∈ Z}: an orthonormal basis of L2(T).
{en : n ∈ Z}: the standard orthonormal basis in l2(Z),where en(m) = δn,m.The Fourier transformation: e imθ 7Ï em is a unitary operator from L2(T)to l2(Z).
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Uncertainty Principles on Z

Recall:
X ⊂ [0, 2π]: a measurable subset, m(X ): the measure of X
PX : the orthogonal projection from L2(T) onto L2(X )
S ⊂ Z
QS : the projection from L2(T) onto span{e imθ : m ∈ S}
Pt : the projection from L2(T) onto L2([2(1− t)π, 2π]) for any 0 < t < 1
Q>j : the projection from L2(T) onto span{e imθ : m > j ,m ∈ Z}When j = 0, the range of projection Q>0 is the Hardy space H2(T)For a mean µω on Z given by a free ultrafilter ω,we define µω(S ) = µω(χS )If the above is independent of ω, then we denote it by µ∞(S ) and it isgiven by

µ∞(S ) = lim
nÏ∞

|S ∩ {−n, −(n − 1), · · · , n − 1, n}|
2n + 1

.

18 / 38



Uncertainty Principles on Z

DefinitionA pair (X , S ) is called balanced if PX ∧ QS = 0 and PX ∨ QS = I .
When G is a finite abelian group, if (X , S ) is balance, then
τ(PX ) + τ(QS ) = 1.
Examples and Questions:
Examples X = [0, π], S0 = 2Z, all even integers, S1 ⊂ Z all odd integers.(X , S0) and (X , S1) are balanced pairs.
m(X ) + µ∞(S0) = m(X ) + µ∞(S1) = 1.
Questions Is m(X ) + µ∞(S ) = 1 a necessary condition for balancedpairs? If "no", for any ε > 0, can one find a balanced pair (X , S ) so that
m(X ) + µ∞(S ) < ε or m(X ) + µω(S ) < ε?

19 / 38



Uncertainty Principles on Z

Some basic facts:

1) PX ∨ QS = I ⇔ PX ∨ Q−S = I , where −S = {−s : s ∈ S};2) PX ∧ QS = 0⇔ PX ∧ Q−S = 0;3) PX ∨ QS = I ⇔ PX ∨ QS+j = I , where S + j = {s + j : s ∈ S};4) PX ∧ QS = 0⇔ PX ∧ QS+j = 0;5) If X ⊂ T with 0 < m(X ) < 1, then PX ∧ Q>j = 0 and
PX ∨ Q>j = I (∀j ∈ Z).
From 5), we see that 1

2 < m(X ) + µ∞(Q>0) < 3
2 .
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Uncertainty Principles on Z

Proof. Let (Uf )(z) = f (z). Then U is a conjugate linear operator suchthat U2 = I and UPXU = PX ,UQSU = Q−S . Thus 1) and 2) are true.Let (Uj f )(z) = z j f (z). Then Uj is a unitary operator such that
UPXU∗ = PX ,UQSU∗ = QS+j . Hence 3) and 4) are true.For 5), let (Vf )(z) = zf (z). Then V is a unitary operator such that(I − PX ∧ Q>0)VPX ∧ Q>0 = 0. As PX ∧ Q>0 6 Q>0 and by Beurlingtheorem, there exists an inner function φ such that
PX ∧ Q>0(H2(T)) = φH2(T). Thus φ = 0 and PX ∧ Q>0 = 0.From 2), PX c ∧ Q60 = 0. This implies that PX ∨ Q>0 = I .
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Uncertainty Principles on Z

Theorem 3For any ε > 0, there exists a measurable subset X of [0, 2π] with 0 <
m(X ) < ε and a subset S of Z with µω(S ) = 0 for some free ultrafilter ωsuch that PX ∧ QS = 0 and PX ∨ QS = I .
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Uncertainty Principles on Z

Proof. For any ε > 0, there exist n in N such that 1
n < ε. Let

X = [2(1− 1
n )π, 2π]. Then m(X ) = 1

n < ε. From Basic Fact 5), we have
PX ∧ Q≥0 = 0 and PX ∨ Q≥0 = PX ∨ Q≥j = I for any j ∈ Z. Then
span{e i n−1

n mθ ,m ≥ j} = L2[0, 2π] for j in Z. In fact if there is a non zerovector f in L2[0, 2π] orthogonal to span{e i n−1
n mθ ,m ≥ j}, we define afunction g (θ) = f ( n

n−1θ) when 0 ≤ θ ≤ 2π n−1
n , 0 elsewhere, then we have∫ 2π

0
f (θ)e−i n−1

n mθdθ = ∫ 2π

0
g (n − 1

n
θ)e−i n−1

n mθdθ = ∫ 2 n−1
n π

0
g (θ)e−imθ = 0,

and hence g is a non zero vector in the range of I − (P1/n ∨ Q≥j ) whichleads a contradiction.
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Uncertainty Principles on Z

For any n in N, since span{e i n−1
n mθ ,m ≥ j} = L2[0, 2π] for j in Z, thereexists m(n, j ) in N such that the distance between e ikθ and

span{e i n−1
n jθ , . . . , e i n−1

n m(n,j )θ}(=Hn,j )
is less than 1

n for any −n ≤ k ≤ n. Obviously, m(n, j ) > j for any j in Z.Let Sn,j be the set {j , . . . ,m(n, j )}. We define mk in N by induction. Let
m1 = m(1, 0). Suppose that mk is defined. Then mk+1 = m(k + 1,m2

k ) for
k ≥ 1 and mk+1 > m2

k . It is clear that the closure of the union of Hk,mk ,
k ≥ 1 is L2[0, 2π] and its corresponding set S is ⋃

k≥1 Sk,mk . For thesequence #S∩{−n,...,0,...,n}
2n+1 , there is a subsequence {∑k

j=1(mj−m2
j−1)

2m2
k+1 }k≥1 withlimit zero, since ∑k

j=1(mj −m2
j−1) < mk . Hence there is a free ultrafilter

ω such that limn→ω
#S∩{−n,...,0,...,n}

2n+1 = 0. 2
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Uncertainty Principles on Z

CorollaryLet Xn = [0, 1
n ] ⊂ T. For any free ultrafilter ω, there is a subset S of Z with

µω(S ) = 0 such that PXn ∧QS = 0 and PXn ∨QS = I , for any n ≥ 1. Thus,for any f , g ∈ L2(T), if there is an n such that f |Xn = g |Xn and f̂ |S = ĝ |S ,then f = g .
Conjecture: S = {0, ±1, ±p, ±2p : p a prime number} is such a setsatisfies our Theorem 4, i.e., ([0, ε], S ) is balanced for any ε > 0.In other words, two functions on T agree on [0, ε] and their Fourierexpansions agree on S . Then they must be the same function.

25 / 38



Applications

One possible application:

If (X , S ) is a balanced pair for T and f ∈ L2(T), then how can we recover
f from f |X and f̂ |S?
It is not an easy question. In the following we shall workout a concreteexample.
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Applications

Theorem 4Let {an}∞n=1 be an increasing sequence of odd natural numbers such that
∞∑

n=1

1
an

= +∞.

Suppose S = {2k : k ∈ N} ∪ {an}. Then P1/2 ∨QS = I and P1/2 ∧QS = 0.In this case, X = [π, 2π]. We may choose {an} so that m(X ) + µ∞(S ) = 3
4 .
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Applications

Lemma Suppose p is a prime number and Ij = {w je iθ ∈ T : θ ∈ [0, 2π
p )}for j = 0, 1, · · · , p − 1. Let X (i1, · · · , im) = Ii1 ∪ · · · ∪ Iim where

0 6 i1 < · · · < im 6 p − 1. Let S0 ⊂ {0, 1, · · · , p − 1} and ∅ 6= S1 ⊂ Sc
0 .Let S = {kp + s0 : k ∈ Z, s0 ∈ S0} ∪ {kp + s1 : k > 0, s1 ∈ S1}. Then wehave

PX (i1,··· ,im) ∧ QS = 0⇔ |Sc
0 | > m + 1.
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Applications

Proof of Theorem 4. QS < Q>0,P1/2 ∧ Q>0 = 0Ñ P1/2 ∧ QS = 0.Assume that P1/2 ∨ QS 6= I . Then there exists a non-zero function f in
L2([0, 2π]) such that f is orthogonal to the ranges of P1/2 and QS . Thus
supp(f ) ⊂ [0, π] and for any s ∈ S , we have

1
2π

∫ π

0
f (θ)e−isθdθ = 1

4π

∫ 2π

0
f (θ

2
)e−isθ/2dθ = 0.

Claim. HS := span{e isθ/2 : s ∈ S} = L2([0, 2π]).
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Applications

Firstly when s = 2k(k ∈ N), we have e ikθ ∈ HS . When s = an for n > 1,for any m ∈ Z, we have
〈e ianθ/2, e imθ〉 = 2i

π(an − 2m) .
Then e ianθ/2 = ∑

m∈Z
2i
π

e imθ

an−2m .Let ξn = ∑−1
m=−∞ e imθ

an−2m = ∑∞
m=1

e−imθ

an+2m . To show that the claim holds,we just need to show that span{ξn : n > 1} = span{e−imθ : m > 1} whichis equivalent to {ξn : n > 1}⊥ ∩ span{e−imθ : m > 1} = 0.
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Applications
Suppose that α(0) = ∑

m>1 α
(0)
m e−imθ such that α(0) ⊥ {ξn : n > 1} and∑

m>1 |α
(0)
m |2 < ∞. Thus for any n > 1, we have

∑
m>1

α(0)
m

an + 2m
= 0.

This implies that for any n > 2, we have
0 = 1

an − a1

∞∑
m=1

( α(0)
m

a1 + 2m
− α(0)

an + 2m
) = ∞∑

m=1

α(0)
m

a1 + 2m
1

an + 2m
.

Let α(1)
m := α(0)

m
a1+2m and α(1) := ∑

m>1 α
(1)
m e−imθ . Then α(1) ⊥ {ξn : n > 2}and

∞∑
m=1

|α(1)
m | 6 ‖α(0)‖ · ( ∞∑

m=1

1(an + 2m)2 )1/2 < ∞.
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Applications

Iterating the process, for any N > 0, we can define α(N)
m = α(N−1)

m
aN+2m and

α(N) = ∑
m>1 α

(N)
m e−imθ with α(N) ⊥ {ξn : n > N + 1}.Without loss of generality, we can assume that α(0)

1 = 1. Then
α(N)

1 = ∏N
n=1

1
an+2 . We define
β(N)
m = α(N)

m

α(N)
1

= (a1 + 2) N∏
n=2

an + 2
an + 2m

α(1)
m ,m > 1.
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Applications
Then we have β(N) = α(N)

α(N)
1

and β(N) ⊥ {ξn : n > N + 1} and
∑
m>2

|β(N)
m | = ∑

m>2

(a1 + 2)( N∏
n=2

an + 2
an + 2m

)|α(1)
m |

6 (a1 + 2)( N∏
n=2

an + 2
an + 4

) ∑
m>2

|α(1)
m |.

Then as ∑ 1
an

= +∞, thus ∏N
n=2

an+2
an+4 = ∏(1− 2

an+4 )Ï 0 as N Ï∞.Then ∃ sufficient large N0 such that for any N > N0 we have
(a1 + 2)( N∏

n=2

an + 2
an + 4

) ∑
m>2

|α(1)
m | < 1. (1)

Thus ∑
m>2 |β

(N)
m | < 1 for any N > N0.
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Applications

On the other hand for any vector β = e−iθ + ∑
m>2 βme−imθ which isorthogonal some ξk , k > 1, then we have

1 = −∑
m>2

βm
ak + 2

ak + 2m
6

∑
m>2

|βm|.

Thus by (1) and (2), we get a contradiction. Thus α(0) = 0. 2
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Applications

Corollary Let S = {nk : k > 0} ∪ {am} where {am} is an increasingsequence of positive integers in (nZ)c and ∑
m

1
am

=∞, then
P(n−1)/n ∨ QS = I and P(n−1)/n ∧ QS = 0.
Finding f from the restrictions to (X , S ) is related to finding the inverseof certain Hankel operators. A special one is the following:Let H(s)(0 < s < 1) be the Hankel operator with the following matrixform 

1
1+s

1
2+s

1
3+s · · ·

1
2+s

1
3+s

1
4+s · · ·

1
3+s

1
4+s

1
5+s · · ·

· · · · · · · · · . . .
 .
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