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Uncertainty Principles on R and Finite Abelian Groups

Heisenberg uncertainty principle

Heisenberg’s canonical commutation relation:

[P,Q]=PQ—- QP =ih

A mathematical representation: [D, M] =

DM — MD =il

where D =i % and M = M,. D = iF*MF.

IFII? = (f.f) = ([D - d, M = c]f, f)]

= (M = c)f, (D —d)*f) = ((D —d)f, (M -

<2[(D = d)f |- [I(M = )f].

c)*f)l
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Uncertainty Principles on R and Finite Abelian Groups

Heisenberg uncertainty principle in term of Fourier analysis:
If

X)2dx = [ 1F&)2de = 1,
/le()ld ]le(é:)ldé’ 1

then we must have

[ xftapac+ [ lefierde > o
R R

(47)2°
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Uncertainty Principles on R and Finite Abelian Groups

Hardy uncertainty principle:

If | f(x)] < Gie™™ and [f(£)] < Goe ™/, then f = Ce ™.

This implies immediately that f and f cannot be both compactly
supported.

Questions:

1. What could be the relation between the support of f and that of o
E.g. If f has a compact support, can the support of f lie in [0, 00)?

(It is known that f and f can be supported in [0, 0).)

2. What if R is replaced by another abelian group G?



Uncertainty Principles on R and Finite Abelian Groups

We shall study Question 2 for finite abelian groups and the group of
integers.

G: a finite abelian group

f:G— C, a complex valued function
supp(f):= {x € G:x € G,f(x) + 0}
f: the Fourier transform of f

Theorem 1 (An uncertainty principle)

(for a nonzero function f):

~

1). |supp(f)] - lsupp(F)| > |G].

For a cyclic group of prime order p (T. Tao, 2005):

2). |suppl(f)| + |supp(F)| > p + 1.
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Uncertainty Principles on R and Finite Abelian Groups

Uncertainty principle in term of spatial properties:

Suppose X C G and S C G. Define

A~

Px = {f :supp(f) C X}; Qs = {f :supplf) C S}.

Let f be a nonzero function on G, X = supp(f) and S = supp(?). Then
f e Pxn Qs.

Tao’s result can be restated as follows:
For G = Z, and any X, S given as above, if Px N Qs # 0, then
X| + 18] = p+ 1

We shall see dim(Px N Qs) = 1 when |X| + |S| =p+ 1.
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Uncertainty Principles on R and Finite Abelian Groups

Notation:

G: a finite additive abelian group, then G is self-dual.

I?(G): the Hilbert space of all complex-valued functions on G.
Inner product: (f,g) := Iiél Y oee f(x)g(x).

Let £, be the characteristic function on {x}. Then {f,:x € G} is an
orthogonal basis for /?(G).

Let e: G x G — T be any non-degenerate bi-character of G.

Let e, denote the function e(x, -).

Then {e, }xcG is an orthonormal basis of /2(G).

If f is a complex function on G, the Fourier transform fof fis
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More notation:

~

Let X,S C G(= G). Denote also by Px the orthogonal projection from
I?(G) onto the subspace /2(X) and Qs the projection from /?(G) onto the
subspace span{e, :x € S}.

Then the uncertainty principle on G given by Theorem 1, part 1) can be
reformulated by:

~

|supp(f)||supp(f)] > |G|(f # 0) is equivalent to

IX|-|S] < |G]= Px A Qs =0.
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The proof follows from a straight forward computation:
for any f € I?(G), if f(x) = 35 s Ayey(x), then

In fact,

xeG
- %Z(nye(y.X))e(X'f)
] leGyES
1 1
- V"4  x)elx, €)) = e
]G]yl;; y();e(y Je(x, &) Gl €

Thus f € (Px A Qs)(12(G))) = supp(f) C X, supp(f) C S. O
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Theorem 2: Let G = Z, with p prime. Then the FAQ

1) Chebotarev’s theorem(Resetnyak, Dieudonne, T.Tao, etc): Let
{X]_r et IXI'I}I {}/1; M :yn} C ZP' (n < p). Then

27rixJ~yk

det(e P )1<j,k<n #0.

2) (Tao’s uncertainty principle)|supp(f)| + ]supp(?)| >p+ 1{f £0).

3) 1f |X| + |S| < p, then Px A Qs = 0.
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Proof. 1)= 2) Theorem 1.1. in [9, T.Tao].

2) = 3) If there is a nonzero function f € Px A Qs, then supp(f) C X
and supp(f) C S. Thus |X| + |S| = |supp(f)| + |supp(f)] = p + 1.

3) = 2) If |supp(f)| + |supp(?)[ < p, then let X = supp(f) and

S = supp(?). We get a contradiction.

3) = 1) If there is {x1,--- ,xn}, {¥1,+* ,yn} C ZIpZ(n < p) such that

27rix_’-yk
detle” ? )igjk<n = 0.

Then vectors {ey, -+, e, f, iy € {x1, -+, x,}°} is linearly dependent.
Thus there is a non-zero vector (Ag, -+ ,Ap—1) such that
n
Y hgeq+ Y. Ayf =0
i=1 YE{x1 e ,%n JC

Let X = {x1,-+ ,xp}¢, S = {x1,-+ ,xp} and f(x) = A, x € G. Then
|X|+|S| =pbutfePxAQs. O
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Proposition 1.

Let w = e’ and G be a cyclic group of order n and |X| +|S| = n. Then

det(w)jcx kese = 0 & det(w¥)jcxe kes = 0.

In particular Px A Qs = 0 & det(w/*)jcx kese # 0.

Proof. Suppose |X| =1, X = {ji,---.,j, _;},S = {ki, -+, kn—1}. Define
Tfe=f,xeXand T, = e, t=1,---,n—1.

Then Px V Qs = | & T is invertible & T|;2(xe) is invertible.

The matrix of T|pz(xe) = (ij){jexc,kes}.

O
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Uncertainty Principles on R and Finite Abelian Groups

Proposition 2
Let G be a finite abelian group and X, S C G. Then we have the following:

1) If |X| + |S| > |G|, then Px A Qs # 0.

2) If | X| + |S| = |G|, then Px A Qs = 0 if and only if Pxe A Qse = 0.

3) If |X| - |S| < 21/]G], then Px A Qs = 0.

Proof: 7(T) = I_Cl;l Y cc{Tex, &) (the trace on B(/2(G))).
By Kaplansky-formula, T(Px V Qs — Px) = t(Qs — Px A Qs)

T(Px A Qs) = T(Px) + 1(Qs) — T(Px V Qs) > 0.0
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Proposition 3

Suppose G is a finite abelian group. Assume that there are a, B, 7 € N such
that, for any function f (£ 0) on G, we have a|supp(f)| + B|supp(f)| = 7.
Then for any nonzero function g on G x Z, with p prime, we have

palsupp(g)| + Blsupp(g)| = py. alsupplg)| + pB|supp(g)| = p7.

Corollary 1

Let G = Zy, x Zq and f be a non zero function on G, where p and g are
prime numbers. Then we have

qlp + 1),
plg + 1).

+1), |supp(f)| + qlsupp(f)|
+ 1), [supp(f)| + plsupp(f)|

qlsupplf)| + |supp(f)|

2 q Z
Zp 2

plsupplf)| + |supp(f)|
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Corollary 2

Let G = (Z,)" for a prime number p and a natural number n, and f be a
non zero function on G. Then we have

P/ lsupplf)] + p"Fsupp(f)| = p" + p" 1= 0,-++ ,n —1).

Corollary 3

Let G = (Zp)" for a prime number p and a natural number n. For any
subsets X, S C G, if there exist 0 > j > n—1 such that p/|X| + p"/~1|S| <
p" + p"~1 holds, then Px A Qs = 0.
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Uncertainty Principles for Z

Recall that an uncertainty principle for R states that, when X C R and
S C R are both compact, then Px N Qs = 0. We hope to describe the
largest possible such pairs (X, S). Or symmetrically the smallest pairs
(X,S) so that Px V Qs = I.

Since Z has no invariant finite measure, we may consider its dual group
G =T, the unit circle on the complex plane.

Now G = Z = T, G =T =Z. G is not self-dual.

Goal: To investigate the respective subsets X of T and S of Z such that
PxNQs=0and Px V Qs = I.
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Uncertainty Principles on Z

Notation:

dm(z) = 2%”% = %d@: the normalized Lebesgue measure on T, where

z =¢%,0¢[0,2m). Also denote T = R/27Z, or simply [0, 27].
{em: 9 c [0,27), m € Z}: an orthonormal basis of L2(T).

{en: n € Z}: the standard orthonormal basis in /?(Z),
where e,(m) = 6, m.

The Fourier transformation: e — e, is a unitary operator from L2(T)
to 1?(Z).
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Uncertainty Principles on Z
Recall:

X C [0,27]: a measurable subset, m(X): the measure of X
Px: the orthogonal projection from L2(T) onto L?(X)

SCZ
Qs: the projection from L2(T) onto span{e™ : mc S}

P;: the projection from L2(T) onto L?([2(1 — t)st,27n]) for any 0 < t < 1
Q;: the projection from L2(T) onto span{e™ :m > j, m € Z}

When j = 0, the range of projection @ is the Hardy space H?(T)

For a mean g1, on Z given by a free ultrafilter w,
we define 11,(S) = po(xs)

If the above is independent of w, then we denote it by p..(S) and it is
given by

. Isn{-n~(n—1),---,n—1,n}|
HoolS) = Jim, on+1 '
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Uncertainty Principles on Z

A pair (X, S) is called balanced if Px A Qs = 0 and Px V Qs = .

When G is a finite abelian group, if (X, S) is balance, then
T(Px) + T(Qs) = 1.

Examples and Questions:

Examples X = [0, 1], So = 2Z, all even integers, S; C Z all odd integers.
(X, So) and (X, S1) are balanced pairs.
m(X) + fleo(So) = m(X) + peo(S1) = 1.

Questions Is m(X) + p(S) = 1 a necessary condition for balanced
pairs? If "no", for any € > 0, can one find a balanced pair (X, S) so that
m(X) + [10(S) < € or m(X) + p,(S) < €?
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Uncertainty Principles on Z

Some basic facts:

1) PxVQs =1 PxV Q_s =1 where -S = {-s:se S}

2) Px NQs =0s Px ANQ_s =0;

3) PxVQs =1 PxV Qsyj=1 where S+j={s+j:seS)
4) Px NQs =0 Px A Qsyj=0;

5) If X c T with 0 < m(X) < 1, then Px A Q>; = 0 and

Px Vv Qsj = I(Vj € Z).

From 5), we see that % < m(X) + foo(Q=0) <

N|jw

20/
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Uncertainty Principles on Z

Proof. Let (Uf)(z) = f(z). Then U is a conjugate linear operator such
that U? = | and UPxU = Px, UQsU = Q_s. Thus 1) and 2) are true.

Let (U;f)(z) = 2zIf(z). Then U; is a unitary operator such that
UPxU* = Px, UQsU* = Qs.;. Hence 3) and 4) are true.

For 5), let (Vf)(z) = zf(z). Then V is a unitary operator such that

(I = Px AN Q=0)VPx A Q>0 = 0. As Px A Q>0 < Q=0 and by Beurling
theorem, there exists an inner function ¢ such that

Px A @=0(H?(T)) = @H?(T). Thus ¢ = 0 and Px A Q¢ = 0.

From 2), Pxc A Q<o = 0. This implies that Px V Q>o = /.
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Uncertainty Principles on Z

For any € > 0, there exists a measurable subset X of [0, 2] with 0 <
m(X) < € and a subset S of Z with u,(S) = 0 for some free ultrafilter w
such that Px A Qs = 0 and Px V Qs = /.
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Uncertainty Principles on Z

Proof. For any € > 0, there exist n in N such that % < €. Let

X =[2(1 - %)n,271]. Then m(X) = % < €. From Basic Fact 5), we have
Px A Q>0 = 0and Px V Q>0 = Px V Qsj = | for any j € Z. Then
span{el™ ™, m > j} = 12]0,2x] for j in Z. In fact if there is a non zero
vector f in L2[0, 27r] orthogonal to spﬁ{e"%me, m > j}, we define a

function g(0) = f(-"50) when 0 < 0 < 271”—;1, 0 elsewhere, then we have

271 201y

e a0 = [ g 2ot an - [T gtge <o,
0 0

27 n__l

0

and hence g is a non zero vector in the range of / — (P, V Q>;) which
leads a contradiction.



Uncertainty Principles on Z

n-1

For any n in N, since span{e’» ™, m > j} = L?[0,2x] for j in Z, there
exists m(n, j) in N such that the distance between e’*? and

spanfe’ w10, ..., e " mimil0}(_ FCn,j)

is less than 1 for any —n < k < n. Obviously, m(n, j) > j for any j in Z.
Let S, be the set {j,..., m(n,j)}. We define m, in N by induction. Let
my = m(1,0). Suppose that my is defined. Then my.1 = m(k + 1, m?) for
k>1and mgy1 > mi. It is clear that the closure of the union of $(y .
k > 1is L2[0,2s] and its corresponding set S is | J,~; Sk,m,. For the

k 2
L=y ma) m’"l)}kzl with

sequence T”} there is a subsequence { Py
k

limit zero, since jle(mj - mf_l) < my. Hence there is a free ultrafilter

w such that lim,_,, —#50{“2’,’7’;'1’0 """ "t~ 0.0
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Uncertainty Principles on Z

Let X, = [0, %] C T. For any free ultrafilter w, there is a subset S of Z with
1(S) = 0 such that Px, A Qs = 0 and Px, V Qs = /, for any n > 1. Thus,
for any f, g € L?(T), if there is an n such that f|x = g|x, and ?[5 = Zs
then f = g.

Conjecture: S = {0, +1,+p, £2p: p a prime number} is such a set
satisfies our Theorem 4, i.e., ([0, €], S) is balanced for any € > 0.

In other words, two functions on T agree on [0, €] and their Fourier
expansions agree on S. Then they must be the same function.
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Applications

One possible application:

If (X, S) is a balanced pair for T and f € L?(T), then how can we recover
f from f|x and f|s?

It is not an easy question. In the following we shall workout a concrete
example.
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Applications

Theorem 4
Let {a,}°2; be an increasing sequence of odd natural numbers such that
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Applications

Lemma Suppose p is a prime number and /; = {w/e® € T: 0 € [0, 2?’T)}
for j=0,1,---,p—1. Let X(ix, -+ ,im) = lj; U---U [, where
0<ih<-<ip<p-1LetS c{0,1,--- ,p—l}andQ#Sl CSS.
Let S ={kp+so:k€Z,sp€ So}VU{kp+s1:k>0,s €5} Then we
have

Px(iy, - im) N Qs = 0 & |S5| = m+ 1.

2838



Applications

Proof of Theorem 4. Qs < Q>0, P12 A Q>0 = 0= P1p A Qs = 0.
Assume that Py, V Qs # /. Then there exists a non-zero function f in
L2([0, 2,]) such that f is orthogonal to the ranges of Py, and Qs. Thus
supp(f) C [0, 1] and for any s € S, we have

L7y —iso 1 (270, o
27[/0 f(0)e d0=4ﬂ/0 f(5)e™™""db = 0.

Claim. (s := span{e™02:s c S} = [2([0, 2)).

/38



Applications

Firstly when s = 2k(k € N), we have e ¢ $(s. When s = a,, for n > 1,
for any m € 7Z, we have

2i

eian9/2’ e .
< nt(a, —2m)

im0> _

Then eia,19/2 — Z 2i eimd

meZ w ap—2m"

Let &, =Y ! i Yy ™ . To show that the claim holds,

m=—00 a,,—2m m=1 a, +2m
we just need to show that span{&,: n > 1} = span{e~"™ : m > 1} which
is equivalent to {&,:n> 1}t Nnspan{e”™ :m > 1} = 0.
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Applications

Suppose that a® = Y om1 alle=im® such that a!® L {&,:n

Y1 Iam |2 < co. Thus for any n > 1, we have

o

= 0.
e an +2m

This implies that for any n > 2, we have

o () 0 o (0]

> 1} and

1

1 am al am
0= - = .
an — a1 ,,,Z=1(31+2m a,,+2m) mzzlal+2man+2m

Let af) := —92 _ and o'V := =Y o1 alte=im0 Then a'V) 1 {£&,:n

ai +2m

and
(ee]

o0
1)) « 1/2 )
%l < (3 e < oo

m=1

> 2}
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Applications

(N-1)
Iterating the process, for any N > 0, we can define a(,,’)” = Um

aN =3 ai)e=im0 with o) | {€,:n> N+ 1}
Without loss of generality, we can assume that a(lo) = 1. Then
oc(lN) =TIV, L. We define

n=1 a,+2°
B“")—aw—( 2)ﬁ ME2 G0 m >
m —-@—- ai + n=2mam,m/ .
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Applications

Then we have gV (—and,B L {&:n>N+1}and
a;

Then as ¥ X = +oo, thus [V, 222 = [](1 -

n=2 a,+4 an +4
Then 3 sufﬁc1ent large Ny such that for any N > No we have

N

W <1

Thus ) ,-» [BE,’,V)] < 1 for any N > Np.

)— 0as N — oco.
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Applications

On the other hand for any vector B = ™ + Y7, Bne™™ which is
orthogonal some &, k > 1, then we have

==Y <Y 1Bl

m>2 m>2

Thus by (1) and (2), we get a contradiction. Thus a'® = 0. O
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Applications

Corollary Let S = {nk: k >0} U {a,} where { am} is an increasing
sequence of positive integers in (nZ)¢ and ), = = oo, then
Pin-1)n V Qs = I and Py,_1), A Qs = 0.

Finding f from the restrictions to (X, S) is related to finding the inverse
of certain Hankel operators. A special one is the following:

Let H(s)(0 < s < 1) be the Hankel operator with the following matrix
form

11 1
lTs 2Ts 3Ts
TS TS TS
3+s 4+4+s b+s
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Applications
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